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Calculations of the development of an undular bore 

By D. H. PEREGRINE 
Department of Mathematics, University of Bristol 

(Received 26 June 1965 and in revised form 22 November 1965) 

If a long wave of elevation travels in shallow water it steepens and forms a bore. 
The bore is undular if the change in surface elevation of the wave is less than 
0-28 of the original depth of water. This paper describes the growth of an undular 
bore from a long wave which forms a gentle transition between a uniform flow 
and still water. A physical account of its development is followed by the results 
of numerical calculations. These use finite-difference approximations to the 
partial differential equations of motion. The equations of motion are of the same 
order of approximation as is necessary to derive the solitary wave. The results 
are in general agreement with the available experimental measurements. 

1. Introduction 
A bore is a transition between different uniform flows of water. It is most easily 

studied in uniform, rectangular, open channels, and in this paper only such 
channels are considered. In  its most common form, a bore is a turbulent, breaking 
zone of water whose length is a few times the depth of water. However, if the bore 
is weak, that is, if the change in water level is much less than the depth of water, 
the bore consists of a train of many waves whose wavelength is several times 
the depth of water. One method of forming a bore is to send a stream of water 
into an area of still water in a long, horizontal channel. The moving water has to 
be deeper than the still water in order to flow into it. If the transition between 
still water and the deeper water has initially a very gentle slope, the slope will 
steepen and form a bore. Experimental measurements by Favre (1935) show that 
undular bores form when the ratio of the change in level to the initial depth of 
water is less than 0.28. If this ratio is greater than 0.28 but less than 0.75 there 
are still undulations, but the first one a t  least is breaking (Binnie & Orkney 1955). 
For greater differences in depth there are no undulations. 

One feature of undular bores is that the undulations are long compared with 
the depth of water. Thus, their formation may be looked at in terms of shallow- 
water theory. Keulegan & Patterson (1940) showed that the undulations 
measured by Fame had properties close to those of cnoidal waves. Cnoidal waves 
were fist derived analytically by Korteweg & de Vries (1895) and are steady 
translational waves. Their limit as the wavelength is increased is the solitary 
wave. In  the derivation of cnoidal waves two ratios 6 and 5 are assumed to be 
small; these are 

wave amplitude water depth 
€ =  and c =  

water depth ’ wavelength * 
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Wavelength is used here to mean the distance in which significant changes in 
surface height occur. There are equations for which 8 need not be small. These 
are the finite-amplitude shallow-water equations, but they are not uniformly 
valid since they predict that, for waves entering still water, any forward-facing 
slope steepens until it is vertical; however, cr is then large and the assumption of 
small (T no longer holds. In  this paper these equations and their solutions will be 
called Airy's theory since he first showed the effects of finite amplftude (for an 
account of the theory see Stoker 1957). 

The variables used here are ~ ( x ,  t ) ,  the vertical displacement of the water 
surface from its original level, and u(z, t),  the mean horizontal velocity of the 
water. Non-dimensional variables are defined as follows : 

7 = q*/h, u = u*/(gh)#, x = x*/h, t = t*(g/h)i, 

where * indicates a dimensional variable and h is the undisturbed depth of water, 
which is taken to be constant. The choice of u and r] as independent variables is 
made since the continuity equation can then be written in the exact form 

% + - [ ( l + q ) u ]  a = 0. 
at ax 

If the flow is assumed to be irrotational with 

E = O(a2) 4 1, 

which is appropriate for solitary and cnoidal waves, the momentum equation is 

au au a7 i a3u -+u-+- = - - + 0 ( ~ 2 4 .  
at ax ax 3ax2at 

Note that scaling factors are not introduced with the non-dimensionalization, so 

u 7 e, and a/ax - apt cr. that 

The third derivative on the right-hand side of ( 2 )  expresses the effect of the 
vertical acceleration of the water on the pressure. It is absent in Airy's theory 
where the pressure is taken to be hydrostatic. 

Equations ( 1 )  and (2) may be simplified by assuming that waves only travel 
in one direction. If they travel in the +x-direction, it may be shown that 

and 

Korteweg & de Vries (1895) first investigated an equation like this by considering 
waves varying slowly when travelling against a uniform stream. For a recent 
derivation of these equations in which a slightly different velocity variable is used, 
see Broer (1964). 

The only known analytical solutions of these equations are the solitary wave 
and cnoidal waves. These solutions are valid for all times, unlike Airy's theory, 
so that it is reasonable to suppose that these equations are uniformly valid in time 
if the initial conditions satisfy the assumptions made in their derivation. 

7 = u + O ( E 2 ) .  
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Finite-difference methods were used to find numerical solutions of the equa- 
tions corresponding to the development of an undular bore from an initial wave 
like that in figure 1. 

The next section gives a physical account of the bore’s initial growth. It is 
followed by sections on the numerical methods and the results of calculations. 
The fully developed bore is considered in the last section. The single equation (3) 
is referred to as I, and the two equations (1) and (2) as 11. 

2. Physical description 
Consider a long shallow-water wave like that in figure 1. Suppose that the 

change in level is initially much less than one and that cr2 < B. The wave steepens 
until cr2 is no longer much less than E .  This phase of the motion is described well 
by Airy’s theory and the pressure in the water is effectively hydrostatic. Once 
~9 N B, this is no longer so. The water surface between the two uniform levels is 
then sufficiently steep for the vertical acceleration of the water to affect the 
pressure significantly. 

u=o  

FIGURE 1. The initial wave. 

A B C D E --- 
FIGURE 2. The extra horizontal pressure gradients due to the 

vertical acceleration of the water. 

Suppose the wave in figure 1 has reached this state. The vertical acceleration 
of the water is upward between E and C. There, the pressure gradient downward 
beneath the surface must be greater than hydrostatic for this acceleration to 
occur. Similarly between C and A the downward pressure gradient must be less 
than hydrostatic since the water has a downward acceleration there. The greatest 
changes from hydrostatic pressure will occur at B and D, the points of maximum 
vertical acceleration (and of maximum surface curvature). The pressure beneath 
D is greater than hydrostatic and beneath B it is less; therefore the horizontal 
pressure gradients are affected and there is an extra horizontal pressure gradient 
from D to B. Similarly, there is a slight extra horizontal pressure gradient from D 
to E, and from A to B, as indicated in figure 2. 

21-2 
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Thus compared with the change of profile expected from an assumption of 
hydrostatic pressure, that is, Airy's theory, these pressure gradients cause an 
extra elevation a t  B, a corresponding depression at D, a slight depression at A, 
and a slight elevation at E. This process continues and a sequence of waves is 
formed, which grow in amplitude until their tendency to steepen is just balanced 
by the horizontal pressure gradients due to the vertical acceleration of the 
water. 

3. Numerical approximations 
Equations I and I1 may be called parabolic-hyperbolic; all their characteristics 

are real but one pair are coincident. However, this is not important since the 
highest derivative is O(e(r3) and may be approximated in several different ways; 
for example, Long (1964) manipulates the equations so that all the characteristics 
are distinct. The type of the equations is relevant to the stability of numerical 
approximations. 

For I the following straightforward finite-difference approximation was used: 

9 
1 -- - 6Ax2At ( ~ T + l , s + l -  aur,s+l +ur-1,s+l-ur+1,s +'ur,s-ur-l,s), (4) 

where = u(rAx, sat). 
Solutions were calculated step by step in time; the values ur, ( r  = 1, . . . , n) and 

boundary values ul, s+l, un,, s+l were used to find ur, s+l. The solutions were stable 
and appeared to converge as Ax and At were reduced. In  all except some pre- 
liminary calculations, Ax was taken equal to At, and will be referred to as A. 

Straightforward finite-difference approximations for I1 are unstable and the 
following scheme was used. An approximation to  the continuity equation was 
used to calculate a provisional value of 7 a t  the advanced time step, that is 
q:,s+l. An approximation to the momentum equation then gave u',,~+~, which was 
used in the continuity equation to obtain a corrected value of qr, s+l. 

The finite-difference equations used for I1 are as follows. 
(i) The continuity equation to find q,*,s+l is 

(ii) The momentum equation to find ur, s+l is 
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and (iii) the continuity equation for qr, s+l is 

+ &, s+l + ZC,, %+I* - %-L = 0. (7 )  2Ax 

An estimate of the accuracy of these approximate equations was found by using 
the known solution for a solitary wave. A solitary wave of amplitude 0.1 was used 
as the initial condition in calculations with both I and 11. The solution should 
have remained steady. With I the amplitude steadily decreased, the rate of 
decrease was less for smaller A, so A was chosen sufficiently small for the dis- 
crepancy to be no more than 5 yo at the end of the integration. With I1 there was 
a small initial change in amplitude and then the wave profile was almost steady. 
The better convergence of I1 appears to be due to the truncation error in (6) 
being O(A3d3), while it is only O(A2d3) in (4). 

The range of integration in x was advanced with unit velocity in order to 
reduce computation time. The usual range of integration in x was 45 and com- 
putation was usually continued up to t = 80. 

4. Results 
In  most of the numerical calculations the initial wave-form was 

u = @,[l - tanh (x/a)] and q = u + $u2. (8)7 (9) 
The initial condition (8) alone was used for calculations with I. The value of q 
given by (9) is the one appropriate to Airy’s theory. The value of a was chosen 
sufficiently large that the initial motion was described by Airy’s theory. Since 
the equations are only correct for small amplitudes, u, was usually taken to be 
0.2 or less. Even so, 7 almost reached 0.5 in calculations with uo = 0.2. 

The results of two representative calculations with I are shown in figures 3 
and 4. The corresponding solutions of Airy’s theory are given for comparison, and, 
as expected, the calculated solutions are close to it initially. The departure from 
Airy’s theory and the growth of the undulations are seen to confirm the qualita- 
tive argument of 0 2. After the first undulation appeared, its rate of growth was 
usually constant for a surprising length of time. This initial rate of growth varied 
with the square of the initial amplitude. This is illustrated in figure 5,  which 
shows the maximum value of u plotted against time for a representative series 
of calculations: the scale for u is in terms of u:. 

It is clear that to some extent these results depend on the form of the initial 
wave. A calculation using a sine curve to join two level surfaces in the initial 
wave gave slightly different results. The difference was probably due to the 
transition between levels being more abrupt for a given maximum slope than with 
the hyperbolic tangent, and there was also a discontinuity in the second deriva- 
tive where the sine curve joined the constant level. If the initial wave is relatively 
steep, the rate of growth of the f i s t  undulation is not constant but decreases 
slowly after a rapid start (e.g. figure 7). The velocity of the first crest was the 
same as that of a solitary wave of the same amplitude, 1 + *a + O(e2). 

Both approximate equations I and I1 were used, and the solutions agreed to 
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FIGURE 3. Initial growth of an undular bore, using I, with A = 0.2, u,, = 0.1, a = 5. 
The solution of Airy’s theory is indicated by a dashed iine. 

within the errors in numerical approximation that were expected from the 
preliminary calculations ($3) .  That is, the solutions were very nearly the same 
near the start of an integration, but as it proceeded the solution from I steadily 
fell below that from 11. 

There are few published experimental results for the initial growth of undular 
bores with which these calculations can be compared. Favre (1935, figure 47, 
page 152) gives four profiles of equivalent waves a t  different times. These profiles 
indicate a rate of growth similar in magnitude to that calculated. 

5. The fully developed undular bore 
After some time, an undular bore reaches an almost steady state, and there are 

more experimental results for this condition (Favre 1935; Sandover & Zienkiewicz 
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FIGTJRE 4. Initial growth of an undular bore, using I, with A = 0.2, u,, = 0.2, a = 8. 
The solution of A i r y ’ s  theory is indicated by a dashed line. 

1957; Sandover & Taylor 1962). Since the numerical approximation for I1 
appeared to converge relatively well, some computations were extended to see 
how the results compared with experiment. An example is illustrated in figures 6, 
7 and 8. 

There is only one steady translational solution of the equations with still water 
in front of a wave, that is the solitary wave. In  the experimentally observed 
steady state, there is an almost uniform train of waves a t  the head of the bore. 
Keulegan & Patterson (1940) showed that these waves behaved like cnoidal 
waves in Fame’s experiments. Benjamin & Lighthill (1954) showed further that 
a uniform train of cnoidal waves can only form on a uniform flow if there is a 
change in the energy of the flow, and thus a uniform train of cnoidal waves 
cannot form an undular bore unless some frictional effects are present. The most 
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FIGURE 5. The maximum amplitude of u as a function of time. From left to right the curves 
are for ug = 0.2,0.15,0.1,0.05. The first is from equations I1 with A = 0.25, the others are 
from I with A = 0-2, and all have a = 5. 

0.2 

0.1 7] 

2 - t  

FIGURE 6. The growth of an undular bore, using 11, with u, = 0.1, a = 2, and A = 0.25. 
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FIGURE 7. Maximum amplitude of u : the same calculations as figure 6. 
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FIGURE 8. Position of crests and troughs: the same calculations as figure 6. 
_.-.-. , Crests; -----, troughs. 
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FIGURE 9. The maximum amplitudes of undular bores. 0, Calculations; A, Favre; 
x , Sandover & Taylor (24 ft.); + , Sandover & Taylor (48 ft.); , Sandover & Zienkiewicz; 
( ) , indicates breaking. 
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likely behaviour for an idealized inviscid bore is that the leading waves slowly 
draw away from each other, so that the bore tends to become a succession of 
solitary waves. This hypothesis is supported by the result that two equal solitary 
waves travelling in the same direction gradually separate (Brooke Benjamin, 
personal communication). I n  the calculated results the profile of the first undula- 
tion agrees to the first order with that of a solitary wave of the same height. 

The maximum amplitude attained by the undulations in the calculations is 
compared with the experimental results in figure 9. The marked discrepancy of 
Sandover & Zienkiewicz’s results is probably due to their channel being smaller 
than the others and the effect of viscosity being more important. Some of the other 
measurements appear to have been taken before the maximum amplitude was 
reached. The calculated results are in general agreement with the experiments. 

The maximum amplitude of the undulations is limited by breaking. The line 
corresponding to the solitary wave of maximum height is included in the diagram 
since it is likely that any undulation can only momentarily exceed that height 
without breaking. It is interesting to note that most of the measured breaking 
waves have an amplitude of about 0.6. The small-amplitude approximation 
used here is clearly not relevant to these finite-amplitude effects. The length of 
the first wave in the calculated bores is in good agreement with Favre’s 
measurements. 

In  practice, undular bores are influenced by viscosity, most usually through 
interactions with a turbulent flow. No attempt has been made to include the 
effect of viscosity in these calculations. If empirical terms to represent dissipa- 
tion are included, a steady profile may be found by integrating an ordinary 
differential equation; both Sandover & Taylor, and Sandover & Zienkiewicz show 
the results of such an integration. 

I wish to thank the Department of Scientific and Industrial Research for 
a studentship, the Director of the University Mathematical Laboratory, Cam- 
bridge, for permission to use EDSAC I1 for the computations, and Dr T. Brooke 
Benjamin for helpful discussions in the course of this work. 
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